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In the last lecture we arrived at the most general description of the rotational motion of a 
rigid body by relating the angular momentum to the angular velocity of the object as: 𝐿�⃗ =

𝐼𝜔̿��⃗ , where 𝐿�⃗ = �
𝐿𝑥
𝐿𝑦
𝐿𝑧
� is the angular momentum represented as a column vector, 𝐼 ̿ =

�
𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

� is called the inertia tensor, and 𝜔��⃗ = �
𝜔𝑥
𝜔𝑦
𝜔𝑧
� is the angular velocity vector.  

Note that the inertia tensor is symmetric about the diagonal: 𝐼𝑖𝑗 = 𝐼𝑗𝑖.  . 

We considered the motion of a “top” that was set into motion at angular velocity 𝜔 along 
one of its principal axes and then supported at a single point on its rotation axis.  The top is 
supported on one of its principal axes, which we will call the 3-axis, with direction 𝑒3� .  The 
top is observed to precess in a cone around the vertical direction 𝑧̂.  We can write the angular 
momentum as 𝐿�⃗ = 𝜆3𝜔𝑒3� , where 𝜆3 is the principal moment for this axis.  There are two 
forces acting on the top, the normal force at the point of suspension, and the weight, acting 
on the center of mass.  We take the origin to be at the point of suspension so that only the 
weight exerts a torque.  The torque leads to a time rate of change of the angular momentum: 

Γ⃗ = 𝐿�⃗ ̇ .  The torque is Γ⃗ = 𝑅�⃗ × 𝑀𝑔⃗, which points in a direction perpendicular to 𝑒3� , and 
therefore 𝐿�⃗ .  This means that �𝐿�⃗ � remains fixed, but the direction of 𝐿�⃗  will change.  We found 

that 𝑒3�̇ = Ω��⃗ × 𝑒3� , where Ω��⃗ = 𝑅𝑀𝑔
𝜆3𝜔

𝑧̂, showing that the principal axis of the top 𝑒3�  is rotating 

around the 𝑧̂ axis at angular velocity 𝑅𝑀𝑔
𝜆3𝜔

.   

We then considered the description of Newton’s second law from the perspective of an 
observer on the rotating object.  The observer in the “body frame” can identify the principal 
axes of the object and describe the angular momentum using the diagonalized inertia tensor 
as 𝐿�⃗ = (𝜆1𝜔1, 𝜆2𝜔2,𝜆3𝜔3).  An inertial observer in the “space frame” is in position to 
identify correctly the net torque Γ⃗ acting on the angular momentum vector, and to write 

Newton’s second law of motion (in rotational form) as Γ⃗ = �𝑑𝐿
�⃗

𝑑𝑡
�
𝑠𝑝𝑎𝑐𝑒

.  We learned how to 

translate the time derivative of a vector quantity from an inertial frame to a rotating reference 

frame in Lecture 14: �𝑑𝑄
�⃗

𝑑𝑡
�
𝑆𝑝𝑎𝑐𝑒

= �𝑑𝑄
�⃗

𝑑𝑡
�
𝐵𝑜𝑑𝑦

+ Ω��⃗ × 𝑄�⃗ , where 𝑄�⃗  is the vector in question and 
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the non-inertial reference frame is rotating with angular velocity Ω��⃗ .  In this case we can write 

the equations of motion as witnessed in the body frame as Γ⃗ = �𝑑𝐿
�⃗

𝑑𝑡
�
𝐵𝑜𝑑𝑦

+ ω��⃗ × 𝐿�⃗  , which 

translates in component form into the Euler equations: 

Γ1 = 𝜆1𝜔̇1 − 𝜔2𝜔3(𝜆2 − 𝜆3) 

Γ2 = 𝜆2𝜔̇2 − 𝜔1𝜔3(𝜆3 − 𝜆1) 

Γ3 = 𝜆3𝜔̇3 − 𝜔1𝜔2(𝜆1 − 𝜆2) 

This set of equations describes how the angular velocity vector evolves as it is acted upon 
by a net external torque.  When applied to the case of the spinning top discussed above, we 
note that Γ3 = 0 (the torque acts in a direction perpendicular to 𝑒3� ) and  𝜆1 = 𝜆2, hence 
𝜆3𝜔̇3 = 0, so that 𝜔3 is constant.  Thus the angular velocity vector remains aligned with 3-
axis and no other component of ω��⃗  is excited. 

 


